Skip to content. | Skip to navigation

Personal tools
Document Actions

Vaibhav Gandhi and Martin McGinnity (2013)

Quantum neural network based surface EMG signal filtering for control of robotic hand


A filtering methodology inspired by the principles of quantum mechanics and incorporating the well- known Schrodinger wave equation is investigated for the first time for filtering EMG signals. This architecture, referred to as a Recurrent Quantum Neural Network (RQNN) can characterize a non-stationary stochastic signal as time varying wave packets. An unsupervised learning rule allows the RQNN to capture the statistical behaviour of the input signal and facilitates estimation of an EMG signal embedded in noise with unknown characteristics. Results from a number of benchmark tests show that simple signals such as DC, staircase DC and sinusoidal signals embedded with a high level of noise can be accurately filtered. Particle swarm optimization is employed to select RQNN model parameters. The RQNN filtering procedure is applied to a thirteen class EMG based finger movement detection system, for emulation in a Shadow Robotics robot hand. It is shown that the RQNN EMG filtering improves the classification performance compared to using only the raw EMG signals, across multiple feature extraction approaches and subjects. Effective control of the robot hand is demonstrated.